Development and Validation of a Brief Assessment of Recovery Capital (BARC-10) for Alcohol and Drug Use Disorder

Abstract

Background: It has been long established that achieving recovery from an alcohol or other drug use disorder is associated with increased biobehavioral stress. To enhance the chances of recovery, a variety of psychological, physical, social, and environmental resources, known as “recovery capital”, are deemed important as they can help mitigate this high stress burden. A 50-item measure of recovery capital was developed (Assessment of Recovery Capital [ARC]), with 10 subscales; however, a briefer version could enhance further deployment in research and busy clinical/recovery support service settings. To help increase utility of the measure, the goal of the current study was to create a shorter version using Item Response Theory models.

Method: Items were pooled from the original treatment samples from Scotland and Australia (N=450) for scale reduction. A reduced version was tested in an independent sample (N=123), and a Receiver Operating Characteristic Curve was constructed to determine optimal cut-off for sustained remission (> 12 months abstinence). **Results:** An abbreviated 10-item measure of recovery capital captured item representation from all 10 original subscales, was invariant across participant's locality and gender, had high internal consistency (α = .90), concurrent validity with the original measure (r_{pb} = .90), and predictive validity with sustained remission using a cut-off score of 47. **Conclusion:** The brief assessment of recovery capital 10-item version (BARC-10) concisely measures a single unified dimension of recovery capital that may have utility for researchers, clinicians, and recovery support services.

Keywords: recovery capital; substance use disorder; item response theory; brief scale; alcohol; remission

1.1 Introduction
1.2

Policy changes have implicated personal health and well-being as important additional primary outcomes to assess in recovery from substance use disorder, also referred to as SUD (Clark, 2007; Davison & White, 2007; Dept. Health and Human Services, 2003; Gagne, White, & Anthony, 2007; Institute of Medicine, 2006; White, 2005), yet clinical research in the US has
focused almost exclusively on abstinence (Donovan et al, 2012). Remission from SUD is increasingly recognized as a dynamic reciprocal process that results in, and is supported by, the accrual of personal, social, environmental, and cultural resources that aid the recovery journey (Kelly & Hoeppner, 2015). Collectively, these resources have been termed, “recovery capital” (Granfield & Cloud, 1999). Recovery capital represents the quantity and quality of internal and external resources that can be brought to bear to initiate and sustain recovery from SUD. The accrual of recovery capital is theoretically important because greater assets will influence resiliency and coping, and can help mitigate the high burden of biological and psychological stress associated with the adaptation to abstinence and remission from SUD (Kelly & Hoeppner, 2015; Laudet & White, 2008). Traditional clinical and research tools often use deficit-based forms of assessment which focus on measuring pathology and harm (e.g., ASI; McLellan et al, 1992). When used alone, traditional tools fail to capture what a review of long-term recovery concluded was one of the strongest predictors of remission: strength-based assessment of resources (White & Cloud, 2008).

The significance of the construct of recovery capital has led to the development and testing of psychometrically and conceptually sound assessment tools. For example, a recovery capital assessment tool (Assessment of Recovery Capital: ARC; Groshkova, Best, & White, 2013) was validated recently showing good psychometric properties and consisted of 50 items representing 10 conceptual subscales. The addition of a briefer version of the ARC, could increase its adoption and implementation in busy clinical and recovery support service settings by increasing speed of administration and scoring; however, this process of scale reduction requires rigorous methodological guidelines to maintain validity.

Item response theory (IRT) and the rasch model of scale development (Rasch, 1960/1980) is a powerful paradigm for scale reduction as it maximizes the efficiency of construct measurement and can help to create briefer measures of equal or greater psychometric value as longer measures of the same domains. IRT methods allow for a precise “diagnosis” of the functioning of each item and response category using a set of interpretative tools (item characteristic, response probability, information curves, differential item functioning, etc.) which provide the bases for item retention in scale reduction (Goetz et al, 2013).

The aim of this study was to work with the original set of 50 items from the ARC (Groshkova et al, 2013) to develop a briefer version that could be deployed more widely in busy clinic/recovery support services settings and in research contexts. The original 50 items are made up of subscales that capture 10 different conceptual domains of recovery capital: substance use and sobriety, global psychological health, global physical health, citizenship and community involvement, social support, meaningful activities, housing and safety, risk-taking, coping and life functioning, and recovery experience. Our goal was to keep as few items as possible while preserving the conceptual model and maximizing its psychometric properties. In doing so we used IRT to identify one item from each of the 10 subscales with the best psychometric characteristics that could be retained and combined to represent a single unified dimension of recovery capital. Similar to current methodological guidelines for shortening composite measurement scales (Goetz et al, 2013), we sought to preserve the content validity and psychometric properties of the original instrument, eliminate differential item functioning (DIF) and item redundancy, document the empirical and conceptual reasons for the item selection, and validate the short instrument (Brief Assessment of Recovery Capital, BARC-10) in an independent sample.

2.1 Method

2.2 Participants

Secondary data analyses were performed on the original treatment sample from Scotland used to field-test the Assessment of Recovery Capital (ARC) in 2010 (Groshkova et al, 2013),
and a treatment sample from Australia collected in 2015 (Best et al, 2016). The treatment sample from Scotland (n =142) was recruited from four community rehabilitation services. Of the 142 individuals, 62.7% were men, 69% were white British and 31% were of other ethnicity. The average age at time of assessment was 35 (± 12.3). Alcohol was the primary substance reported by 35.3% of the sample, other drugs were reported by 31.6 %, and 33.1% indicated both alcohol and other drugs. A detailed description of the study design and characteristics of the sample from Scotland are published by Groshkova and colleagues (2013).

The other treatment sample (n =308) was recruited from five Therapeutic Communities on the east coast of Australia. Of the 308 individuals, 67.9 % were male, 89.6% were born in Australia and the rest were from the United Kingdom (2.6%) or New Zealand (1.6%). The average age was 35 years (± 9.2). The majority reported a drug (other than alcohol) to be their primary substance (63.6%) while 33.1% reported alcohol as primary. A detailed description of the study design and characteristics of the sample from Australia are published by Best and colleagues (2016).

Our goal was to develop a brief measure of recovery capital by retaining the treatment samples from Scotland and Australia for three reasons: 1- we seek to be as consistent with the original ARC development as possible thereby incorporating the original sample, 2- a brief measure of recovery capital that is validated on diverse samples will have wider utility, and 3- suggestions for future DIF guidelines (Zwick, 2012) stated that in order to increase sample size, if necessary, pooling data from beyond a 12 month interval should be considered to increase stability of results.

2.3 Measure

The ARC (Groshkova et al, 2013) is a self-report, strength-based measure of an individual's personal and social resources that can support recovery from a SUD and contains 50 items. Participants are asked to respond by placing a check mark in the box for the statements that they agree with and that describe their experience on the day of assessment. The participant’s response is then recorded and entered as a binary response option (agree/disagree). The 50 – items are divided into 10 subscales (5 items per subscale) to assess the following conceptual domains: substance use and sobriety, global psychological health, global physical health, citizenship and community involvement, social support, meaningful activities, housing and safety, risk-taking, coping and life functioning, and recovery experience. Subscale scores are calculated by summing the items. Thus, a score between 0 and 5 can be reached for each subscale. The ARC also can be scored by separating the 50-items into subscales of personal versus social recovery capital and summing the scores on 25 items in each domain. An overall total score is the sum of each subscale score and can range from 0 to 50. Higher scores indicate greater levels of recovery capital.

2.4 Analysis Plan

2.5 Unidimensionality. Evidence of unidimensionality, or finding a single underlying pattern in the data matrix, is an assumption of using the Rasch model. The original ARC was designed to have a strong unidimensional component as described in Groshkova et al. (2013). They reported a single factor was extracted from ten subscales using a principle components analysis (PCA) which was confirmed by a Bartlett’s test of sphericity and Kaiser-Mayer-Olkin measure of sampling adequacy. This means that although the ARC has ten subscales, they are more conceptual than empirical (i.e., PCA does not produce 10 different factors) and may be represented by a common construct. The samples from Scotland and Australia could be heterogenous so we will use PCAs to inspect for differences in the subscale factor structure and assess the degree of empirical support for pooling the samples. If we find the factor structures are similar in the number of factors produced and range of the loadings, we will use PCA to assess the subscale factor structure of the pooled samples. The criterion suggests that the first
component should be ≥ 20% (Reckase, 1979), the ratio of the first to second eigenvalue should be at least 3 to 1 in order for the scale to be considered unidimensional (Lord, 1980).

2.6 Best fitting model (1-PL vs. 2-PL). We compared the fit of the one-parameter logistic model (i.e., 1-PL also referred to as the Rasch Model) to the two-parameter logistic model (2-PL) using the program BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996). The “one parameter” makes reference to the only defining characteristic of the Rasch model: item difficulty (β). The 2-PL is an extension of the 1-PL through the addition of an item slope or discrimination parameter (α). An item’s discrimination indicates how strongly the item is related to the latent trait, similar to a factor loading in classical test theory. Items with high discrimination are better at differentiating respondents around the location point (b) (i.e., the amount of the latent trait needed to have a 50% chance of endorsing the item), thus increasing measurement precision.

The 1-PL (Rasch, 1960/1980) and the 2-PL (Birnbaum, 1968) are appropriate for analyzing ordered dichotomous response formats where respondents rate their level of agreement with a statement using two categories (e.g., agree/disagree). We used the best fitting model to test for DIF and then select items for retention in the scale reduction process.

2.7 Differential item functioning (DIF). A test item is labeled with DIF when examinees with equal ability (i.e., matched or “controlled for” on the underlying latent trait referred to as theta [θ]), but from different groups, have an unequal probability of endorsing the item. In other words, if the response to an item is dependent on group membership, the test item is not invariant across groups (also referred to as item bias). A test of DIF would provide further empirical information if the samples from Scotland and Australia were similar enough to be pooled into a single calibration sample by inspecting for invariance in the difficulty (b) and discrimination (α) parameters. After eliminating items that are labeled with DIF between locality we pooled the reports into a single calibration sample and tested for DIF between sex.

Since our goal was to eliminate as many items as possible while still retaining conceptual representation from each of the ten subscales, we adopted flagging rules based on statistical significance (p < .05) with Mantel-Haenszel as opposed to rules associated with clinical or practical significance which can produce more conservative results when the goal may be to retain scale items based upon the impact of DIF (Scott et al, 2010).

2.8 Comparison of psychometric properties. We tested whether the BARC-10 had equivalent psychometric properties to the original ARC by comparing the internal consistency and concurrent validity between the two measures.

2.9 Independent sample validation. We piloted the BARC-10 in a battery of measures as part of a survey of members from InTheRooms.com, an online community of individuals in or seeking recovery, primarily for SUD. InTheRooms.com hosts more than 400,000 individuals, and is designed to facilitate peer interaction and recovery support through many online resources including, but not limited to “chats” and live online video meetings. A detailed description of the study design and sample characteristics can be found elsewhere (Bergman, Kelly, Hoeppner, Vilsaint, & Kelly, in press).

2.9.1 Category response functioning. The original 50 – item ARC had participants respond by marking a tick next to the boxes for the statements that they agree which is then recorded and entered as a binary response option (agree/disagree). We expanded the response options to six categories for two reasons. First, instruments with binary response categories can fail to capture the nuances of the construct which may be more apparent in a brief 10-item measure compared to a more comprehensive 50-item measure. Second, multiple response options increase sensitivity and thus the ability to make finer discriminations. This is especially important when measurements are used to make decisions about an individual rather than a group trait (Frank-Stromborg, 2004) which is a common condition in clinical research. Therefore, we piloted the BARC-10 in an independent sample with the following six-point Likert scale response categories: (1) strongly disagree, (2) disagree, (3) somewhat disagree, (4) somewhat
agree, (5) agree, and (6) strongly agree. Scores can range from a minimum of 10 to a maximum of 60.

We used the Partial Credit Model (PCM; Masters, 1982) to examine response categories functioning in the program WINSTEPS (Linacre, 2011). PCM is appropriate for testing if polytomous response formats, where respondents rate their level of agreement with a statement on a multi-point scale, are indeed ordered. The PCM makes no constraints about step difficulties (intersections between response categories), so step difficulties can differ across different items and will reflect if the Likert scale functions in a meaningful way. Unlike the Graded Response Model (Samejima, 1969), the PCM provides an empirical test of the assumption that categories are ordered which can be useful for item screening during in an initial validation such as this.

Average measures, step calibrations, and fit statistics were examined to test whether the response categories behaved sufficiently well. Average measures (i.e., ability / trait level estimates of theta θ, which is recovery capital in this case) and step calibrations are expected to increase with increasing response categories. Violation of this pattern indicates the response categories are disordered, or reversed. In addition, we used category fit indices (infit and outfit) and category probability curves to provide additional information about functioning of response categories. Infit and outfit statistics reflect the degree of unexpectedness in the data. Infit is sensitive to patterns of misfit in the data responses than would otherwise be predicted by the model. Outfit is sensitive to unusual responses such a highly able person failing to endorse an easy item. The categories are considered as misfitting if infit or outfit statistics were less than .5 or greater than 2 (Linacre, 2011).

2.9.2 Predictive validity. To determine and compare the sensitivity (SN) and specificity (SP) of the BARC – 10 as an indicator of sustained remission (\geq 12 months of abstinence) and obtain its optimal cut-off scores, a receiver operating characteristic (ROC) curve was examined. Validity coefficients (SN, SP), and the area under the curve (AUC) and its associated 95% confidence interval (CI) were calculated. Optimal cut-off scores were determined by assessing the score, which combined maximum SN and optimal SP, using the Youden index (Perkins & Schisterman, 2006; Fluss, Faraggi, and Reiser, 2005).

2.10.1 Test information function (TIF). TIF is similar to classical test theory in the concepts of reliability and standard error. We examined the TIF to determine which raw scores on the BARC-10 have the highest measurement precision.

3.0 Results
3.1 Unidimensionality
Evidence provided by Groshkova and colleagues (2013) showed the underlying factor structure of the ARCs ten subscales can be represented as a single linear component. Consistent with the original design we ran a PCA to test the unidimensionality of the ARC using SPSS v.22. Both the samples from Scotland and Australia yielded a single linear component that accounted for 59.1% and 54.2% of the variance respectively in the 10 subscale scores. In addition, the Scotland sample had loadings between .54 and .83 which was similar to the Australian sample loadings that ranged between .60 and .78. The PCA’s suggested that a highly similar dominant dimension existed in the underlying subscale structure of the data so we combined the samples and ran a final PCA. Using pooled samples, a PCA yielded a single factor that accounted for 55.1% of the variance, which was larger than the recommended criterion of 20% (Reckase, 1979). Loadings from the pooled samples ranged from .62-.79. suggesting that there was a dominant dimension present in the underlying data structure.

3.2 Best Fitting Model (1PL vs. 2PL)
We compared the model fit by calculating the $-2 \log$ likelihood difference between the 1PL and 2PL. The resulting chi-square difference was 212.04, with 10 df ($p < .001$), which indicated the more complex model (2PL) was the best fit to test for DIF and complete the scale analysis for item retention.
3.3 Differential Item Functioning

Despite the smaller sample sizes, we found significant DIF for one item when comparing the treatment samples from Australia ($n_R = 308$) to Scotland ($n_F = 142$). We then pooled the treatment samples and found no DIF between men ($n_R = 297$) and women ($n_F = 148$). The DIF analysis provided additional support that the samples were similar enough to be pooled into a single calibration sample. We eliminated the item labeled DIF before completing the scale analysis and item selection.

3.4 Item Selection

Our goal was to keep as few items as possible while preserving the conceptual model and maximizing its psychometric properties. Therefore, we retained a single item from each narrowband subscale to keep the conceptual pieces of recovery capital intact. We used a strategy that would maximize psychometric properties and efficiency by selecting items with high discrimination, spanned a wide range of item difficulty, and eliminated items that measured the same level of difficulty twice (i.e., redundancy). The final items and corresponding parameter estimates retained for the BARC-10 are displayed in Table 1.

3.5 Comparison of Psychometric Properties

The BARC-10 retained similar psychometric properties of the original ARC which has an internal consistency of $\alpha = .92$ compared to the BARC-10 $\alpha = .90$. The concurrent validity between the ARC and BARC-10 is high at $r_{pb} = .90$.
Table 1

BARC-10 Scale Items with Corresponding Item Parameter Estimates for Threshold (i.e., difficulty) and Slope (i.e., discrimination) with Standard Error (S.E)

<table>
<thead>
<tr>
<th>Item</th>
<th>Threshold S.E.</th>
<th>Slope S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are more important things to me in life than using substances</td>
<td>-2.01</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>In general I am happy with my life</td>
<td>0.18</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>I have enough energy to complete the tasks I set for myself</td>
<td>-0.49</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.23</td>
</tr>
<tr>
<td>I am proud of the community I live in and feel a part of it</td>
<td>-0.48</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>I get lots of support from friends</td>
<td>-0.63</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>I regard my life as challenging and fulfilling without the need for using drugs or alcohol</td>
<td>-0.30</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>My living space has helped to drive my recovery journey</td>
<td>-0.65</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.18</td>
</tr>
<tr>
<td>I take full responsibility for my actions</td>
<td>-1.64</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>I am happy dealing with a range of professional people</td>
<td>1.53</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>I am making good progress on my recovery journey</td>
<td>-1.32</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.24</td>
</tr>
</tbody>
</table>

3.6 Independent Sample Validation

3.6.1 Participants. Of the $N = 123$ respondents from InTheRooms.com, the average age was approximately 51 years, 43% were male, 94% white, and approximately 45% were employed full-time. Two-thirds ($\approx 64\%$) identified alcohol as their primary substance and the mean length of time abstinent was 7.34 years (± 9.25). The sample had extensive treatment histories, with 65% reporting participation in outpatient addiction treatment, almost 50% had
used medical detoxification, and 60% inpatient/residential. The mean total score on the BARC-10 was 50.70 (± 6.91).

3.6.2 Category response functioning. Overall, the PCM supported the use of a six–point Likert scale response category. Within each item, the average measures and step calibrations increased monotonically as the rating scale moved from lower to higher categories. The category response curves also showed successive response categories each located in the expected order. This meant that each category was the most likely to be endorsed according to a corresponding trait level and there is no reason to consider collapsing response categories. Inspection of the category fit indices showed that each of the six response categories showed acceptable infit mean-square statistics (between .96 - 1.79) and all categories had acceptable outfit mean-square statistics with the exception of one (between .94 - 2.45), strongly disagree which was 2.45.

3.6.3 Predictive validity. Sensitivity (SN) and specificity (SP) values for different cut-off points were computed and a ROC curve was constructed to determine the best cut-off to choose. The estimated ROC curve had an AUC of .79 (95% CI .71 - .86) which indicates the BARC-10’s concurrent validity with sustained remission (> 12 months of abstinence). The hypothesis was tested whether the AUC was greater than .5, that is whether using the BARC – 10 to predict recovery stage is better than chance alone. The AUC = .79 (95% CI .71 - .86) (P < .0001), suggesting the BARC-10 does help to predict recovery stage. Next, Youden indices were calculated for a range of possible cut-off points using SN and SP values for the BARC-10 total score. According to the ROC curve above and guided by the J-values, the optimal cut-off level yielding maximal SN and SP for predicting early recovery or later (i.e., 1 year or more) was a BARC-10 score of 47 (SN = 84%; SP = 65%, at J = .53).

3.6.4 Test information function (TIF). TIF is an indicator of measurement precision and can be determined at any level of ability, or in this case, any level of recovery capital. For ability estimates of theta (θ) that range between −2.40 and 2.03 the scale measures with greater than 80% reliability. This means the BARC-10 is over 80% reliable on raw scores between 15 to 53.

4.0 Discussion
This is the first empirical study to develop a brief version of the original 50-item ARC (Groshkova et al, 2013) using item response theory. We shortened the ARC by eliminating items that showed DIF and item redundancy, retained one item from each of the 10 narrowband subscales that had the best psychometric properties to maintain content validity and represent a single unified dimension, and validated the brief instrument in an independent sample. After piloting the BARC-10, we used the PCM to determine that a six-point Likert scale was empirically supported and each response category had meaning relative to a corresponding trait level. We used a ROC curve analysis to test the ability of the BARC-10 to identify individuals who had reached self-reported sustained remission and found that 12 months or more of abstinence from alcohol and other drugs was associated with a score of 47. The resulting BARC-10 is a 10 – item measure which is invariant across groups based on locality and sex. The BARC-10 can be completed in approximately one minute, has high content validity capturing the same 10 domains of recovery capital used to develop the original instrument, and possesses equivalent psychometric properties.

The need for measures of recovery capital is driven by a paradigmatic shift in the field of addiction recovery and reinforced by policy changes (Clark, 2007; Davison et al, 2007; Dept. Health and Human Services, 2003; Gagne et al, 2007; Institute of Medicine, 2006; White, 2005). Similar to the ARC, the BARC-10 measures the quantity of broader personal, social, physical, and professional resources in an individual’s environment that are used to initiate and sustain recovery as well as structural supports such as a recovery-supportive living space and community relationships, but in a briefer version with equally good psychometric properties and
a high correlation with the longer measure. As such, it offers an alternative measure of recovery capital in settings where brevity is valued.

The BARC-10 provides an index of recovery progress that extends beyond mere abstinence. As such, it might be used as measure of the positive outcome benefits accrued as individuals abstain or reduce their substance use. Additionally, it may serve as a useful proximal/intermediate measure to assess mechanisms of behavior change as greater accrual or recovery capital may predict future abstinence and remission (Kelly et al., 2015). Evaluation and progress measures can provide valuable insight to both program evaluation and patients’ success, and is often of interest (or requirement) of insurance companies. As important payers and other stakeholders in the field continue to scrutinize the recovery construct (Knopf, 2001; El-Guebaly, 2012) it is important to have measureable indicators of recovery progress beyond self-reported abstinence, objective urine, and blood tests.

4.1 Limitations

Findings from the current study should be viewed in light of important limitations. One such limitation is the lack of verification of self-reported recovery time. In addition, the mean score on the BARC-10 was almost 50 which may suggest a ceiling effect given the maximum score is 60; however, this should be considered in light of the mean length of recovery time in the sample which was approximately 7.5 years (i.e., maintenance or long-term recovery). A strength of the measure is its cross-validation in international treatment samples; however, the we used convenience samples that could have some heterogeneity and the psychometric properties should be further evaluated in other samples. Furthermore, the extent to which clinicians find the BARC-10 helpful in establishing care plans and ranking priorities in ongoing client support is yet to be investigated. As noted by Groshkova and colleagues (2013), an important line of future research is to determine the degree to which various profiles of recovery capital combined with symptoms of problem severity predict levels of care and post-intervention recovery outcomes.

4.2 Conclusion

With the aid of Item Response modeling and its wide acceptance as a gold standard for refining and reducing the length of existing scales in the social, medical, and educational sciences we have been able to reduce scale length without undermining its psychometric properties. As such, the briefer BARC-10 may serve as a potentially helpful additional tool for researchers, clinicians, health care systems and electronic health records, as well as peer-to-peer recovery support services where brevity is needed.

References

McLellan, T. A., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., Pettinati, H.,

